Revisiting Video Saliency: A Large-scale Benchmark and a New Model
نویسندگان
چکیده
In this work, we contribute to video saliency research in two ways. First, we introduce a new benchmark for predicting human eye movements during dynamic scene freeviewing, which is long-time urged in this field. Our dataset, named DHF1K (Dynamic Human Fixation), consists of 1K high-quality, elaborately selected video sequences spanning a large range of scenes, viewpoints, motions, object types and background complexity. Existing video saliency datasets lack variety and generality of common dynamic scenes and fall short in covering challenging situations in unconstrained environments. In contrast, DHF1K makes a significant leap in terms of scalability, diversity and difficulty, and is expected to boost video saliency modeling. Second, we propose a novel video saliency model that augments the CNN-LSTM network architecture with an attention mechanism to enable fast, end-to-end saliency learning. The attention mechanism explicitly encodes static saliency information, thus allowing LSTM to focus on learning more flexible temporal saliency representation across successive frames. Such a design fully leverages existing large-scale static fixation datasets, avoids overfitting, and significantly improves training efficiency and testing performance. We thoroughly examine the performance of our model, with respect to the state of the art saliency models, on three largescale datasets (i.e., DHF1K, Hollywood2, UCF sports). Experimental results over more than 1.2K testing videos containing 400K frames demonstrate that our model outperforms other competitors.
منابع مشابه
Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملRegion-Based Multiscale Spatiotemporal Saliency for Video
Detecting salient objects from a video requires exploiting both spatial and temporal knowledge included in the video. We propose a novel region-based multiscale spatiotemporal saliency detection method for videos, where static features and dynamic features computed from the low and middle levels are combined together. Our method utilizes such combined features spatially over each frame and, at ...
متن کاملOnline Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network
We propose an online visual tracking algorithm by learning discriminative saliency map using Convolutional Neural Network (CNN). Given a CNN pre-trained on a large-scale image repository in offline, our algorithm takes outputs from hidden layers of the network as feature descriptors since they show excellent representation performance in various general visual recognition problems. The features...
متن کاملVideo Salient Object Detection Using Spatiotemporal Deep Features
This paper presents a method for detecting salient objects in videos where temporal information in addition to spatial information is fully taken into account. Following recent reports on the advantage of deep features over conventional handcrafted features, we propose the SpatioTemporal Deep (STD) feature that utilizes local and global contexts over frames. We also propose the SpatioTemporal C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.07424 شماره
صفحات -
تاریخ انتشار 2018